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abstract. — Rotating waves are circularly polarized electromagnetic wave fields that behave 
like traveling waves but have discrete resonant frequencies of standing waves. In JPL’s 
Communications Ground Systems Section (333), we are making use of this peculiar type of 
electromagnetic modes to develop a new generation of devices and instruments for direct 
applications in space exploration. In this article, we present a straightforward analysis about 
the phase velocity of these wave modes. A derivation is presented for the azimuthal phase 
velocity of transverse magnetic rotating modes inside cylindrical cavity resonators. Com-
puter simulations and experimental measurements are also presented that corroborate the 
theory developed. It is shown that the phase velocity of rotating waves inside cavity resona-
tors increases with radial position within the cavity and decreases when employing higher- 
order operating modes. The exotic features of rotating modes, once better understood, have 
the potential to enable the implementation of a plethora of new devices that range from 
amplifiers and frequency multipliers to electron accelerators and ion thrusters.

I. Introduction

JPL’s Communications Ground Systems Section (333) is currently conducting research on 
several technologies for applications in the Deep Space Network (DSN), Mars exploration, 
radio astronomy, energy storage, and electric propulsion, among others. Several of these 
technologies share a common denominator, which is the use of microwave resonators. We 
are designing microwave cavity resonators that employ circularly polarized electromagnetic 
modes that we refer to as rotating modes. The rotating modes have the peculiarity that they 
operate at the frequency ~ and that they rotate azimuthally about the device axis with a 
rotating frequency proportional to ~ [1].1 In one application, we use the rotating feature 
of these waves to synchronize the rotating wave fields with spinning electrons to produce 
electron acceleration. The resulting miniature accelerator is being proposed as a new X-ray 
source for standoff surveying of the Martian landscape. Another application we are devel-
oping involves placing solid-state amplifiers in the path of the rotating wave to produce 



2

high-power electromagnetic radiation via a novel spatial power combining technique.2 This 
advanced compact power amplifier has direct applications in both radar and communica-
tions for ground and flight missions.3 A third application we are pursuing is for electric 
propulsion wherein rotating waves are used to produce the so-called cyclotron acceleration 
of ions to generate unparalleled ion thrust and specific impulse. Other applications of these 
rotating waves include diodeless microwave rectifiers for power beaming, terahertz fre-
quency multipliers, high-power phase array transmitters, super-fast flywheel energy storage 
devices, microwave motors, etc.

All the new concepts discussed above exploit the gyrating nature of rotating wave modes. 
This article describes our efforts to better understand the rotational properties of these wave 
fields. Specifically, we concentrate on analyzing and measuring the phase velocity of rotat-
ing modes. In what follows, we calculate the phase velocity of rotating wave fields, present 
computer simulations of these modes carried out in the code High-Frequency Structure 
Simulator (HFSS), as well as report on experimental measurements of the phase velocity of 
the rotating wave fields. 

II. Transverse Magnetic TMmnp Modes

In this article, we shall concentrate on discussing transverse magnetic (TM) electromagnetic 
modes generated inside cylindrical cavity resonators. Specifically, we study the rotational 
velocity of TMmnp modes with indices m, n, and p that denote, respectively, the azimuthal, 
radial, and axial wave periodicity. Furthermore, we analyze TMmnp asymmetric modes with 
m ≥ 1 to ensure we deal only with rotating modes [1].4 Transverse electric (TE) modes can be 
similarly analyzed.

We shall assume that a cylindrical resonator, with a radius a and length L, holds a trans-
verse-magnetic TMmn0 mode with no axial periodicity (i.e., p = 0). The complete set of field 
equations for the TMmn0 mode, in cylindrical coordinates ( , ,r zz ) is given by [1]:5
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where Eo is a field constant and J k rm =_ i is the mth-order Bessel function of the first kind. 
The radial wave number / ,k u a umn mn==  is the nth zero of m ( )J u , and t  is the time coordi-
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nate. The azimuthal index can take values m = ±1, ±2, ±3,…, f is the permittivity of free 
space, and [3]
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The radian frequency ~ for these modes is given by the dispersion relation [5] which, for 
p = 0, is reduced to

,c a
umn~

=

where ( )c /1 2nf= -  is the speed of light.

Figure 1 shows plots of Bessel functions for m = 0, 1, 2, 3 including the location of various 
zeros of mJ  and Jml . It is of interest to note in the figure the significance of umn. According 
to Equation (4), once ~  is selected, umn dictates the value of the cavity radius a. The higher 
the azimuthal index m, the larger the cavity radius. For example, for m = 1, /a c$~  = 3.832; 
for m = 2, /a c$~  = 6.380; for m = 3, /a c$~  = 6.832 and so on. If a TMm10 mode is selected 
to operate at m = 3 instead of, say, m = 1, the cavity radius would almost double in size; that 
is, ( )/ ( )TM TMa a103 110  = 1.7.

In order to examine the phase velocity of the rotating wave fields, we hereafter shall con-
centrate on analyzing the axial electric field, Equation (1). Upon inspection of this rotating 

(4)

Figure 1. Bessel functions plots for m = 0, 1, 2, 3.
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wave, we should note that this field resembles a frozen field in space that rotates azimuth-
ally about the cavity axis. At any equiphase spot on the frozen field, the following condi-
tion is met:

,t Cm~ z- =

where C is a constant. Applying derivatives to Equation (5) and solving for the rotating 
frequency /d dtr / zX , we obtain

.dt
d

mr /
z ~

X =

At any radial position r, the fields’ z-directed phase velocity pv  is given by [4]
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~
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Equation (7) states that the phase velocity of TMmn0 rotating fields increases with the radial 
coordinate r. The larger the radius, the higher the azimuthal phase velocity of the wave 
field. For instance, there is a critical radius rc at which the phase velocity pv  equals the 
speed of light. That is,

p cc
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Solving for rc and making use of Equation (4), we obtain 
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The critical radius rc is an important parameter to take into account, especially when deal-
ing with charged particles. It was found in previous work [5] that synchronous interactions 
between magnetized charged particles and rotating fields inside a resonator were limited 
to areas with radial positions cr r#  wherein the phase velocity is lower or equal than the 
speed of light.

Furthermore, upon inspection of Equation (1) it can observed that the rotating electric field 
inside the resonator peaks (i.e., m ( )J u  achieves a maximum), at a radial value pr  given by
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while the associated phase velocity measured at pr  is
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/ =l . Proper selection of umnl  and m so as to 
minimize 

m
umnl  should yield phase velocities vpp near the speed of light. Plots of p /r a and 

/v cpp
 as a function of m, for various TMm10 modes, are shown in Figure 2.

Note in Figure 2 that for larger values of m, (i.e., m >> 1), vpp approaches the speed of light. 
Furthermore, it can be observed in the figure that as the azimuthal periodicity is increased 
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Figure 2. Plots of rp  /a and vpp /c as a function of m are shown for various TMm10 modes.
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(i.e., a higher-order mode is selected), the radial location of the electric field peak is gradu-
ally pushed towards the edge of the cavity wall, pr a" .

The flight time it takes the rotating wave to cover a complete revolution about the cavity 
axis, TRW, is calculated as the ratio of the distance travelled by the wave, r2r , over its veloc-
ity, pv . That is,

p
.T v

r
m

22
RW $

rr
~= =

It is noteworthy that the rotational period TRW  is independent of the radial coordinate, 
which means that at any radial position within the cavity resonator the wave takes the 
same amount of time to complete a revolution about the axis. In addition, the flight time 
is proportional to the azimuthal periodicity of the wave m. This means that for rotating 
modes operating with larger values of m, the wave slows down by m [Equation (7)], which 
results in the wave taking longer to complete a revolution around the cavity. 

We are currently taking advantage of these key features of TMmn0 rotating modes for the 
implementation of a new generation of devices and instruments. A judicious selection of 
the mode index m will allow us to operate rotating modes at a frequency ~ while their 
wave fields rotate at /m~ . Larger values of m slow down the wave, thus increasing their 
flight time within the cavity.
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(13)

An illustration of this concept is shown in Figure 3, where the axial electric field of a  
TM310mode is plotted. In this example, m = 3 (u31 = 6.380 and u31l  = 4.201), which yields 

p /r a = 0.658 and /v cpp
 = 1.4. Note that the wave, having an azimuthal periodicity  

m = 3, features three peaks and three valleys. Moreover, these wave fields resonate at ~  
but rotate azimuthally about the cavity axis at /3~ . The associated flight time, given by 
Equation (12), is /T 3 2RW $ r ~=  (it takes the wave three radio-frequency periods to com-
plete one revolution). 

It should be pointed out that the phase velocity derivations presented here apply to both 
TE and TM rotating modes inside cylindrical cavity resonators. In the next section, we pres-
ent a case study for TM modes.

Figure 3. A surface plot of the axial electric field of a TM310 rotating mode in a cylindrical resonator. The height of 

the surface is proportional to Ez . The fields operate at ω but rotate about the axis at 1/3 ω.

/3~

A. Transverse Magnetic TM110 Mode

In this section, we study the TM110 rotating mode inside a cylindrical cavity resonator. An 
expression for the axial electric field for this mode can be deduced from Equation (1) as

, , , ,cosE r z t E J k r tz o 1z ~ z= -=_ _ _i i i

where the operating frequency ~ is given by Equation (4), /k u a11==  and u11 = 3.832. 
The fields of this mode both oscillate and rotate azimuthally at the same frequency 
~ [1]. Figure 4(a) shows the field lines of the TM110 rotating mode inside a cylindri-
cal cavity. The electric field lines go in and out of the picture and peak at a radius 

p .r a a a0 48.
.
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l
. In Figure 4(b), we show a surface plot of the axial electric 

field Ez obtained with Equation (13).

In order to corroborate the phase velocity calculations shown above, we performed HFSS 
computer simulations and experimental studies of the TM110  rotating mode inside a cav-
ity resonator. The cavity is cylindrical in geometry and is designed to operate at 2.4 GHz. 
Per Equation (4), the cavity radius is a = 7.5 cm whereas the cavity length, being frequency 
independent, is arbitrarily set to L = 5 cm. We used four test ports located at positions A, 
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Figure 4. (a) Electromagnetic field lines and (b) surface plot of axial electric field Ez for TM110 rotating mode.
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B, C, and D, as shown in Figure 5. The radial position of each port is pr  = 3.75 cm and the 
azimuthal angle between neighboring ports is 90 deg. The goal of these studies was to 
measure the azimuthal phase velocity of the Ez field by measuring the time x it would take 
the rotating wave to move from point A to B, B to C, and C to D, respectively. Per Equa-
tion (12), the rotating wave travels one complete revolution (from 0 to 2r) in one RF period 
( RW /T 2r ~= ). Therefore, the flight time between two neighboring test ports, r/2 apart, 
should be equal to a quarter of an RF period, that is:

.2A B B C C Dx x x ~
r

= ==- - -

In the next section, we present HFSS simulations performed to verify the accuracy of Equa-
tion (14).

(14)

Driving
Probe #2

Cavity
Resonator

Port A

Port B

Port C

Port D

Driving
Probe #1

Figure 5. Cylindrical microwave cavity showing the location of the various driving and test ports.

B. HFSS Computer Simulations

We input the cavity geometry (a = 7.5 cm, L = 5 cm) into the HFSS code to generate the 

TM110 rotating mode and to study the phase velocity of the wave fields. The TM110 rotat-
ing mode was launched in HFSS via two driving ports placed at r = a = 7.5 cm, 90 deg apart 
azimuthally, working at a frequency of 2.4 GHz (see Figure 5). In addition, a time shift 
of 90 deg was also provided between the two driving signals. The driving probes are two 
50‑ohm coaxial lines each terminated in a magnetic loop. Figure 6 shows an HFSS contour 
plot of the axial electric field along the cavity cross-section (r z- ). Note that this plot cor-
rectly represents the TM110 mode axial electric field denoted by Equation (13), featuring a 
peak and a valley as one moves azimuthally from 0 to 2r. 
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Figure 6. HFSS-calculated contour plot of the axial electric field Ez of the TM110. Note that this plot illustrates the 

intensity of the field (field polarity is not shown). The red-colored areas denote the peak of the electric field.

In Figure 7, we show four snapshots of the axial electric field Ez  taken with a difference of 
a quarter of an RF period between them. Note that in going from z = 0 to z = 270 deg, as 
expected, the mode rotates counterclockwise about the cavity axis. We also measured the 
RF electric field at the four test points A–D, respectively, shown in Figure 5. The four test 
points are located at r = pr  = 3.75 cm. Plots of the electric field measured along these points 
as a function of phase angle of the driving signals are shown in Figure 8. Noteworthy is the 
fact that each trace is delayed with respect to the previous one by z = 90 deg. For example, 
in moving from A to B, the wave takes a quarter of an RF period, z = 90 deg, or r/(2~), as 
predicted by Equation (14). The same results are obtained between points B and C, and C 
and D, respectively, as shown in the additional traces. The results obtained in HFSS confirm 
the theoretical phase velocity analysis described earlier. 

To conclude with the phase velocity analysis of TM110 rotating modes, we also performed 
experimental measurements of the mode dynamics inside a resonator. Results of these mea-
surements are presented next.

C. Experimental Measurement of Phase Velocity

The purpose of these final studies was to experimentally verify Equations (7), (12), and (14). 
We built a cylindrical resonator for operation in the TM110  mode at a frequency of 2.4 GHz. 
The cavity radius is a = 7.5 cm and the cavity length was set to L = 5 cm. The RF signal 
is provided by a Hewlett Packard (HP) 8350B signal generator furnished with an 83555A 
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Figure 7. Vector plots of the axial electric field Ez of the TM110 mode obtained in HFSS. Plots are taken with  

a difference of a quarter of an RF period (90 deg) between them. Note that the wave  

rotates counterclockwise about the cavity axis.

Figure 8. Time history of the axial electric field Ez measured along the test ports A–D obtained in HFSS.
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plugin. We used two driving probes to generate the rotating mode inside the cavity [6]. The 
driving probes were placed around the edge of the cavity (r = a) and 90 deg apart azimuth-
ally. A 90-deg time shift was also applied between the driving probes via a 90-deg hybrid in 
order to successfully generate the rotating mode [6]. We included four test ports located at 
the radial position pr  = 2.75 cm and 90 deg apart from each other. Figure 9 shows a picture 
of the cavity resonator illustrating the position of the driving ports as well as the test ports, 
which are labeled as A, B, C, and D, respectively.

For the purpose of measuring the rotating wave dynamics, we used coaxial capacitive 
probes in each port that were critically coupled to the cavity to measure the electric rotat-
ing wave field at that point. The output of each port was directly connected to an 8-GHz 25 
GS/s Tektronix DSA70804B oscilloscope via suitable coaxial lines.

At this point, it is convenient to describe the expected wave dynamics along the area where 
the test ports are positioned. Recall that the wave resembles a frozen field featuring a peak 
and a valley [as shown in Figure 4(b)] that spins about the cavity axis. As the rotating wave 
travels azimuthally, it scans over each of the electric probes, completing a 360-deg revolu-
tion in one RF period. Consequently, as the wave moves over a specific probe, the probe 
will sense the peaks and valleys of the rotating field passing over it, causing the signal mea-
sured by that probe to be sinusoidal. In Figure 10 we show a typical oscilloscope measure-
ment of the RF electric field obtained at port A. Note that, as expected, the measured signal 
is sinusoidal with a period of 417 ps (corresponding to a frequency of 2.4 GHz).
 
We next measured ports A and B on the oscilloscope. The time it takes the wave to travel 
from A to B is equal to the arc travelled by the wave divided by the wave velocity. Fig-
ure 11 shows a typical result of the simultaneous measurements at ports A and B. Note 
that the signal from port B is delayed with respect to port A by 104 ps, which is exactly 
a quarter of an RF period. This delay results from the wave taking that time to move 
from A to B. The wave’s phase velocity between point A and B can then be calculated as 
( )/( ). .2 2 75 10 104 10 5 52 104
1 2 12 8$ $ $ $r =- -  m/s, which turns out to be 1.84 c$ . These results 
corroborate our theory [Equation (11)] that the rotating wave at a radial position pr  is trav-
elling at u11l  times the speed of light (where u11l  = 1.841). Figure 12 shows the four signals 
measured simultaneously from ports A thru D, respectively. Again, one can observe that 
in travelling from A to B, B to C, and C to D, the rotating wave takes exactly a quarter of a 
period (104 ps), as predicted earlier.

We should also note that if the mode launched inside the cavity is not a rotating mode 
(e.g., a standing-wave mode instead), the signals measured by the oscilloscope would be 
superimposed and will depict different amplitudes. Figure 13 shows oscilloscope measure-
ments from ports A–D when a standing wave mode is launched inside the cavity resonator 
via driving probe number two. Note that, indeed, the signals have different amplitudes and 
are superimposed, as described in previous lines.
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Figure 9. Picture of experimental apparatus and microwave resonator designed to operate at 2.4 GHz in the TM110 

mode. Shown are:     25 GS/s oscilloscope;    HP signal generator;     S-band microwave resonator;  

   90-deg hybrid;    ,   driving probes;    port A;   port B;    port C; and     port D.
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Figure 10. Oscilloscope trace obtained from port A. Note that the sinusoidal signal has a period of 417 ps,  

which corresponds to the operational frequency of 2.4 GHz. 
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Figure 11. Oscilloscope traces obtained simultaneously from port A and port B. The delay between the  

two traces is 104 ps, corresponding to a quarter of an RF period. 
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Figure 13. Oscilloscope traces obtained simultaneously from port A, B, C, and D, when a  

standing-wave mode is launched inside the cavity. 
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III. Conclusions

We have presented a basic theoretical analysis for the phase velocity of TMmn0 rotating 
modes inside cylindrical resonators. It was shown that rotating waves slow down as the 
azimuthal index m of the wave is made larger. Furthermore, it was also found that the  

z-directed velocity increases as the radial coordinate is increased. Expressions were derived 
for calculating the radius at which the electric field peaks within the cavity and the cor-
responding velocity, at that radius. We found agreement among theory, simulations, and 
experimental testing.

These initial results are a prelude to further research being conducted in the JPL Communi-
cations Ground Systems Section (333) on rotating modes. We plan to perform further stud-
ies about energy and power carried by rotating waves as well as rotating wave field analysis 
near the cavity axis, e.g., k r= << 1. Our findings will be reported in a timely manner.

Additionally, it should be stated that the section is actively pursuing the development of 
an advanced spatial power combiner amplifier (SPCA)6 that uses the rotating mode features 
described herein.

We believe that the rotating modes studied here have great potential to be a technology 
enabler for a new breed of devices and instruments for space exploration, the military, and 
industry.
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